Things on this page are fragmentary and immature notes/thoughts of the author. Please read with your own judgement!
The simplest and best way is to leverage pandas_udf
in PySpark.
In the pandas UDF,
you can call subprocess.run
to run any shell command
and capture its output.
from pathlib import Path
import subprocess as sp
import pandas as pd
CMD = "./pineapple test --id1-path {} --htype1 3 --n0 2 --n2 5 --ratio2 0.001"
def run_cmd(cmd: str) -> str:
try:
proc = sp.run(cmd, shell=True, check=True, capture_output=True)
except sp.CalledProcessError as err:
print(f"Here: {err}\nOutput: {err.stdout}\nError: {err.stderr}")
print("Content of Directory:")
for p in Path(".").glob("*"):
print(f" {p}")
raise err
return proc.stdout.strip().decode()
@pandas_udf("string", PandasUDFType.SCALAR)
def test_score_r4(id1):
path = Path(tempfile.mkdtemp()) / "id1.txt"
path.write_text("\n".join(str(id_) for id_ in id1))
output = run_cmd(CMD.format(path))
return pd.Series(output.split())