In [5]:
import numpy as np
import pandas as pd
Max Number of Columns to Display¶
In [3]:
pd.options.display.max_columns = 100
Max Number of Rows to Display¶
In [4]:
pd.options.display.max_rows = 500
Max Column Width to Display¶
You can control the max column width of pandas display
using the option pd.options.display.max_colwidth
.
Set pd.options.display.max_colwidth to a specific limit.
In [3]:
pd.options.display.max_colwidth = 100
Set pd.options.display.max_colwidth to None
which imposes no limit.
In [3]:
pd.options.display.max_colwidth = None
In [4]:
df = pd.DataFrame(
{
"id": [1, 2, 3, 4, 5],
"link": [
"http://a_super_loooooooooooooooooooooooooooooooong_link.com",
"",
"",
"",
"",
],
}
)
df
Out[4]:
In [2]:
df
Out[2]:
Display Formatting of Floating Numbers¶
In [10]:
df = pd.DataFrame(np.random.randint(100, 10000, size=(4, 2)), columns=["a", "b"])
df.head()
Out[10]:
In [11]:
df.dtypes
Out[11]:
In [12]:
pd.options.display.float_format = "{:,}".format
In [13]:
df
Out[13]:
In [8]:
dir(pd.options.display)
Out[8]:
Display Formatting for Integers¶
https://stackoverflow.com/questions/29663252/format-pandas-integers-for-display
Styling¶
- Avoid applying styling on large pandas DataFrames,
as pandas styling (using
DataFrame.style.format) is extremely slow on large data frames. It is suggested that you always useDataFrame.head,DataFrame.tailor filtering to limit the size of a DataFrame before applying styling to it. Another good way is to display a pandas DataFrame using a widget extension. For more details, please refer to JupyterLab Extensions for Spreadsheet.
In [ ]:
In [ ]: