Things on this page are fragmentary and immature notes/thoughts of the author. Please read with your own judgement!
In [ ]:
In [ ]:
fig, axes = plt.subplots(figsize=(50, 5))
tree.plot_tree(classifier3["decisiontreeclassifier"],
feature_names=classifier3[:-1].get_feature_names_out(),
class_names=["Good", "Bad"],
rounded=True,
precision=1,
filled=True,
impurity=False,
fontsize=10)
In [ ]:
from sklearn import tree
for dt_estimator in classifier["gradientboostingclassifier"].estimators_:
dt = dt_estimator[0]
fig, axes = plt.subplots(figsize=(50, 5))
tree.plot_tree(dt,
feature_names=classifier[:-1].get_feature_names_out(),
class_names=["Good", "Bad"],
rounded=True,
precision=1,
filled=True,
impurity=False,
fontsize=10)
References¶
How to visualize an sklearn GradientBoostingClassifier? https://stackoverflow.com/questions/44974360/how-to-visualize-an-sklearn-gradientboostingclassifier